בעיה פתורה בגיאומטריה, חפיפת משולשים ריבוע ומקבילית

נתון ABCD הוא מקבילית ו- BEFC ריבוע.

צריך להוכיח כי המשולשים ABE ו- DCF חופפים

הוכחה

במקבילית ABCD הצלע BA שווה ל-CD. בריבוע BEFC , הצלע EB שווה ל- FC. מאחר ו- EB מקביל ל FC ו- BA מקביל ל-CD אז הזוויות EBA ו FCD שוות.

מכאן משולשים ABE ו-DCF חופפים (צ.ז.צ):
הזוויות EBA ו FCD שוות – הוכח פיסקה קודמת.
AB = CD – צלעות נגדיות במקבילית ABCD שוות
BE = CF – צלעות נגדיות בריבוע CBEF שוות

מ.ש.ל

מודעות פרסומת

להשאיר תגובה

הזינו את פרטיכם בטופס, או לחצו על אחד מהאייקונים כדי להשתמש בחשבון קיים:

הלוגו של WordPress.com

אתה מגיב באמצעות חשבון WordPress.com שלך. לצאת מהמערכת / לשנות )

תמונת Twitter

אתה מגיב באמצעות חשבון Twitter שלך. לצאת מהמערכת / לשנות )

תמונת Facebook

אתה מגיב באמצעות חשבון Facebook שלך. לצאת מהמערכת / לשנות )

תמונת גוגל פלוס

אתה מגיב באמצעות חשבון Google+ שלך. לצאת מהמערכת / לשנות )

מתחבר ל-%s