בעיה פתורה בגיאומטריה: שני מלבנים זהים ומשולש ישר זווית שווה שוקיים

בעיה פתורה בגיאומטריה: שני מלבנים זהים ומשולש ישר זווית שווה שוקייםהמרובעים ABCD ו- EFCG הם מלבנים.
נתון BC = CG , FC = DC

הוכח המשולש ACE הוא ישר זווית ושווה שוקיים

הוכחה:
השיטה: מבצעים חפיפת משולשים ABC ו- CFE. מהחפיפה נועים שוויונות הצלעות AC, EF וסכום הזוויות ACB, ECF תשעים מעלות.

חפיפת משולשים ABC ו- CFE
1. CD = AB – צלעות נגדיות במלבן ABCD שוות
2. CD = FC – נתון
3. AB = FC – נובע מ- 1 ו-2

4. CG = AB – צלעות נגדיות במלבן EFCG שוות
5. CG = BC – נתון
6. AB = BC – נובע מ-4 ו-5

7. זווית ABC = זווית EFC = זוויות ישרה – כל הזוויות במלבן ישרות

8. משוויונים 3,6,7 נובע כי משולש ABC חופף למשולש CFE צ.ז.צ

מהחפיפה נובע:
EC = AC – מ.ש.ל. 1

9. זווית FCE = זווית CAB – נובע מהחפיפה 8
10. זווית ACB + זווית CAB = זווית ישרה – סכום הזוויות החדות במשולש ישר זוית ABC שווה 90 מעלות
מ-9 ו- 10 נובע:
11. זווית ACB + זווית FCE = זווית ACE = זווית ישרה – הצבה – מ.ש.ל 5

מודעות פרסומת

להשאיר תגובה

הזינו את פרטיכם בטופס, או לחצו על אחד מהאייקונים כדי להשתמש בחשבון קיים:

הלוגו של WordPress.com

אתה מגיב באמצעות חשבון WordPress.com שלך. לצאת מהמערכת / לשנות )

תמונת Twitter

אתה מגיב באמצעות חשבון Twitter שלך. לצאת מהמערכת / לשנות )

תמונת Facebook

אתה מגיב באמצעות חשבון Facebook שלך. לצאת מהמערכת / לשנות )

תמונת גוגל פלוס

אתה מגיב באמצעות חשבון Google+ שלך. לצאת מהמערכת / לשנות )

מתחבר ל-%s