הוכחת משפט בגיאומטריה: אם שני ישרים מקבילים נחתכים על-ידי ישר שלישי, אזי סכום שתי זוויות חד-צדדיות פנימיות הוא 180º

הוכחת משפט בגיאומטריה: אם שני ישרים מקבילים נחתכים על-ידי ישר שלישי, אזי סכום שתי זוויות חד-צדדיות פנימיות הוא 180º

נתונים שני ישרים מקבילים a, b וחותך היוצר זויות 1,2 בין הישרים לחותך.

זויות חד צדדיות פנימיות, סכומן 180 מעלות
זויות חד צדדיות פנימיות, סכומן 180 מעלות

הוכחה

משפט זה ניתן להגדיר על דרך השלילה של אקסיומת הישרים המקבילים. אם שני ישרים הנחתכים על-ידי ישר שלישי אינם יוצרים באף צד של החיתוך זוג זוויות פנימיות שסכומן קטן מ- 180º, אזי שני הישרים לעולם לא יפגשו גם אם נאריכם עד לאינסוף. כלומר, במקרה שלעיל שני הישרים הם ישרים מקבילים.

מודעות פרסומת

להשאיר תגובה

הזינו את פרטיכם בטופס, או לחצו על אחד מהאייקונים כדי להשתמש בחשבון קיים:

הלוגו של WordPress.com

אתה מגיב באמצעות חשבון WordPress.com שלך. לצאת מהמערכת / לשנות )

תמונת Twitter

אתה מגיב באמצעות חשבון Twitter שלך. לצאת מהמערכת / לשנות )

תמונת Facebook

אתה מגיב באמצעות חשבון Facebook שלך. לצאת מהמערכת / לשנות )

תמונת גוגל פלוס

אתה מגיב באמצעות חשבון Google+ שלך. לצאת מהמערכת / לשנות )

מתחבר ל-%s